Interdisciplinary Journal of Virtual Learning in Medical Sciences

Published by: Kowsar
Crossmark

Energy-Efficient Algorithm for Mixed-Criticality Systems in E-Learning Environment

Seyed Hasan Sadeghzadeh 1 , *
Author Information
1 Department of Information and Communication Technology, Payame Noor University, Tehran, Iran
Article information
  • Interdisciplinary Journal of Virtual Learning in Medical Sciences: June 30, 2019, 10 (2); e89300
  • Published Online: September 7, 2019
  • Article Type: Research Article
  • Received: January 15, 2019
  • Revised: February 4, 2019
  • Accepted: February 4, 2019
  • DOI: 10.5812/ijvlms.89300

How to Cite: Sadeghzadeh S H. Energy-Efficient Algorithm for Mixed-Criticality Systems in E-Learning Environment, Interdiscip J Virtual Learn Med Sci. 2019 ; 10(2):e89300. doi: 10.5812/ijvlms.89300.

Abstract
Copyright © 2019, Interdisciplinary Journal of Virtual Learning in Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. Xu H, Li R, Zeng L, Li K, Pan C. Energy-efficient scheduling with reliability guarantee in embedded real-time systems. Sustain Comput Infor Syst. 2018;18:137-48. doi: 10.1016/j.suscom.2018.01.005.
  • 2. Kopetz H. Real-time systems: design principles for distributed embedded applications. Springer Science & Business Media; 2011.
  • 3. Baruah SK, Cucu-Grosjean L, Davis RI, Maiza C. Mixed criticality on multicore/manycore platforms (dagstuhl seminar 15121). Dagstuhl Seminar 15121. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik; 2015.
  • 4. Baruah SK, Bonifaci V, D'Angelo G, Li H, Marchetti-Spaccamela A, Megow N, et al. Scheduling real-time mixed-criticality jobs. IEEE Tran Comput. 2012;61(8):1140-52. doi: 10.1109/tc.2011.142.
  • 5. Santy F, George L, Thierry P, Goossens J. Relaxing mixed-criticality scheduling strictness for task sets scheduled with FP. Real-Time Systems (ECRTS), 24th Euromicro Conference on 2012 Jul 11. IEEE; 2012. p. 155-65.
  • 6. Baruah S, Bonifaci V, Dangelo G, Li H, Marchetti-Spaccamela A, van der Ster S, et al. The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems. Real-Time Systems (ECRTS), 24th Euromicro Conference on 2012 Jul 11. IEEE; 2012. p. 145-54.
  • 7. Park T, Kim S. Dynamic scheduling algorithm and its schedulability analysis for certifiable dual-criticality systems. Embedded Software (EMSOFT), Proceedings of the International Conference on 2011 Oct 9. IEEE; 2011. 253 p.
  • 8. Baruah S, Li H, Stougie L. Towards the design of certifiable mixed-criticality systems. Real-Time and Embedded Technology and Applications Symposium (RTAS), 16th IEEE 2010 Apr 12. IEEE; 2010. p. 13-22.
  • 9. Niz D, Lakshmanan K, Rajkumar R. On the scheduling of mixed-criticality real-time task sets. Real-Time Systems Symposium, RTSS. 30th IEEE 2009 Dec 1. IEEE; 2009. p. 291-300.
  • 10. Baruah S, Vestal S. Schedulability analysis of sporadic tasks with multiple criticality specifications. Real-Time Systems. ECRTS'08. Euromicro Conference on 2008 Jul 2. IEEE; 2008. p. 147-55.
  • 11. Su H, Zhu D, Brandt S. An elastic mixed-criticality task model and early-release EDF scheduling algorithms. ACM Trans Desig Autom Electron Syst. 2016;22(2):1-25. doi: 10.1145/2984633.
  • 12. Su H, Zhu D. An elastic mixed-criticality task model and its scheduling algorithm. Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE; 2013. p. 147-52.
  • 13. Huang P, Yang H, Thiele L. On the scheduling of fault-tolerant mixed-criticality systems. Design Automation Conference (DAC), 51st ACM/EDAC/IEEE. IEEE; 2014. p. 1-6.
  • 14. Ekberg P, Yi W. Bounding and shaping the demand of generalized mixed-criticality sporadic task systems. Real-Time Syst. 2013;50(1):48-86. doi: 10.1007/s11241-013-9187-z.
  • 15. Su H, Guan N, Zhu D. Service guarantee exploration for mixed-criticality systems. 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications. IEEE; 2014. p. 1-10.
  • 16. Schreiner S, Gruttner K, Rosinger S, Rettberg A. Autonomous flight control meets custom payload processing: A mixed-critical avionics architecture approach for civilian UAVs. Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), IEEE 17th International Symposium on 2014 Jun 10. 2014. p. 348-57.
  • 17. Vestal S. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance. Real-Time Systems Symposium. RTSS 2007. 28th IEEE International 2007 Dec 3. IEEE; 2007. p. 239-43.
  • 18. Legout V, Jan M, Pautet L. Scheduling algorithms to reduce the static energy consumption of real-time systems. Real-Time Syst. 2015;51(2):153-91. doi: 10.1007/s11241-014-9207-7.
  • 19. Marwedel P. Embedded system design. 1. New York: Springer; 2006.
  • 20. Cheng D, Zhou X, Lama P, Ji M, Jiang C. Energy Efficiency Aware Task Assignment with DVFS in Heterogeneous Hadoop Clusters. IEEE Trans Parallel Distrib Systems. 2018;29(1):70-82. doi: 10.1109/tpds.2017.2745571.
  • 21. Weste NH, Eshraghian K. Principles of CMOS VLSI design: A systems perspective. California: Addision-Wesley Publishing; 1994.
  • 22. Bambagini M, Marinoni M, Aydin H, Buttazzo G. Energy-Aware Scheduling for Real-Time Systems. ACM Tran Embed Comput Syst. 2016;15(1):1-34. doi: 10.1145/2808231.
  • 23. Xie G, Zeng G, Xiao X, Li R, Li K. Energy-efficient scheduling algorithms for real-time parallel applications on heterogeneous distributed embedded systems. IEEE Trans Parallel Distrib Systems. 2017;28(12):3426-42. doi: 10.1109/tpds.2017.2730876.
  • 24. Huang P, Kumar P, Giannopoulou G, Thiele L. Energy efficient DVFS scheduling for mixed-criticality systems. Proceedings of the 14th International Conference on Embedded Software. ACM; 2014. p. 1-10.
  • 25. Volp M, Hahnel M, Lackorzynski A. Has energy surpassed timeliness? Scheduling energy-constrained mixed-criticality systems. Real-Time and Embedded Technology and Applications Symposium (RTAS), IEEE 20th. IEEE; 2014. p. 275-84.
  • 26. Taherin A, Salehi M, Ejlali A. Reliability-aware energy management in mixed-criticality systems. IEEE Tran Sustainable Comput. 2018;3(3):195-208. doi: 10.1109/tsusc.2018.2801123.
  • 27. Legout V, Jan M, Pautet L. Mixed-criticality multiprocessor real-time systems: Energy consumption vs deadline misses. First Workshop on Real-Time Mixed Criticality Systems (ReTiMiCS). 2013. p. 1-6.
  • 28. Narayana S, Huang P, Giannopoulou G, Thiele L, Prasad RV. Exploring energy saving for mixed-criticality systems on multi-cores. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS). IEEE; 2016. p. 1-12.
  • 29. Han JJ, Tao X, Zhu D, Aydin H, Shao Z, Yang LT. Multicore mixed-criticality systems: Partitioned scheduling and utilization bound. IEEE Tran Comput Aided Des Integr Circ Syst. 2018;37(1):21-34. doi: 10.1109/tcad.2017.2697955.
  • 30. Li Z, Guo C, Hua X, Ren S. Reliability guaranteed energy minimization on mixed-criticality systems. J Syst Softw. 2016;112:1-10. doi: 10.1016/j.jss.2015.10.029.
  • 31. Moghaddas V, Fazeli M, Patooghy A. Reliability-oriented scheduling for static-priority real-time tasks in standby-sparing systems. Microprocess Microsy. 2016;45:208-15. doi: 10.1016/j.micpro.2016.05.005.
  • 32. Baruah S, Chattopadhyay B, Li H, Shin I. Mixed-criticality scheduling on multiprocessors. Real-Time Syst. 2013;50(1):142-77. doi: 10.1007/s11241-013-9184-2.
  • 33. Gu C, Guan N, Deng Q, Yi W. Partitioned mixed-criticality scheduling on multiprocessor platforms. Proceedings of the conference on Design, Automation & Test in Europe. European Design and Automation Association; 2014. 292 p.
  • 34. Bini E, Buttazzo GC. Biasing effects in schedulability measures. 16th Euromicro Conference on Real-Time Systems,. 2004. p. 196-203.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments