Interdisciplinary Journal of Virtual Learning in Medical Sciences

Published by: Kowsar

Factors Affecting Acceptance and Use of Educational Wikis: Using Technology Acceptance Model (3)

Faegheh Mohammadi 1 and Firooz Mahmoodi 2 , *
Authors Information
1 Department of Information Sciences and Knowledge Studies, University of Tabriz, Tabriz, Iran
2 Department of Education, University of Tabriz, Tabriz, Iran
Article information
  • Interdisciplinary Journal of Virtual Learning in Medical Sciences: March 31, 2019, 10 (1); e87484
  • Published Online: March 4, 2019
  • Article Type: Research Article
  • Received: December 12, 2018
  • Revised: February 15, 2019
  • Accepted: February 16, 2019
  • DOI: 10.5812/ijvlms.87484

To Cite: Mohammadi F , Mahmoodi F. Factors Affecting Acceptance and Use of Educational Wikis: Using Technology Acceptance Model (3), Interdiscip J Virtual Learn Med Sci. 2019 ; 10(1):e87484. doi: 10.5812/ijvlms.87484.

Copyright © 2019, Interdisciplinary Journal of Virtual Learning in Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Konieczny P. Rethinking Wikipedia for the classroom. Contexts. 2014;13(1):80-3.
  • 2. Karasavvidis I. Wiki uses in higher education: Exploring barriers to successful implementation. Interact Learn Env. 2010;18(3):219-31. doi: 10.1080/10494820.2010.500514.
  • 3. Inoue Y. Cases on online and blended learning technologies in higher education: Concepts and practices. Hershey, PA: Information Science Reference; 2010.
  • 4. Notari M. How to use a Wiki in education:'Wiki based effective constructive learning'. Proceedings of the 2006 International Symposium on Wikis. ACM; 2006. p. 131-2.
  • 5. Avci U, Askar P. The comparison of the opinions of the university students on the usage of blog and wiki for their courses. J Educ Tech Soc. 2012;15(2):194-205.
  • 6. Sarrafzadeh M, Hazeri A, Alavi S. [Knowledge and use of web 2.0 by LIS academics in Iran]. Iran J Inf Proces Manag. 2012;28(1):21-38. Persian.
  • 7. Hartig O, Zhao J. Publishing and consuming provenance metadata on the web of linked data. Provenance and annotation of data and processes. Berlin Heidelberg: Springer; 2010. p. 78-90.
  • 8. Hooman HA. [Structural equation modeling with Lisrel application]. SAMT Publication; 2014. Persian.
  • 9. Seyyed Abbaszadeh M, Amani Sari Baglou J, Khazri Azar H, Pashavi G. [An introduction to structural equation modeling in PLS and its application in behavioral sciences]. 2012. p. 126-39. Persian.
  • 10. Wang YS, Wu MC, Wang HY. Investigating the determinants and age and gender differences in the acceptance of mobile learning. Brit J Educ Technol. 2009;40(1):92-118. doi: 10.1111/j.1467-8535.2007.00809.x.
  • 11. Chin WW, Marcolin BL, Newsted PR. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a monte carlo simulation study and an electronic-mail emotion/adoption study. Inf Sys Res. 2003;14(2):189-217. doi: 10.1287/isre.
  • 12. Wardrop JL, Loehlin JC. Latent variable models: An introduction to factor, path, and structural analysis. J Educ Stat. 1987;12(4):410. doi: 10.2307/1165058.
  • 13. Peter JP, Churchill GA. Relationships among research design choices and psychometric properties of rating scales: A meta-analysis. J Market Res. 1986;23(1):1. doi: 10.2307/3151771.
  • 14. Fornell C, Larcker DF. Evaluating structural equation models with unobservable variables and measurement error. J Market Res. 1981;18(1):39. doi: 10.2307/3151312.
  • 15. Gefen D, Straub D. A practical guide to factorial validity using PLS-graph: Tutorial and annotated example. Commun Associat Inf Sys. 2005;16. doi: 10.17705/1cais.01605.
  • 16. Hair JF, Hauff S, Hult GTM, Richter NF, Ringle CM, Sarstedt M. Partial least squares strukturgleichungsmodellierung. Vahlen Franz GmbH; 2017. doi: 10.15358/9783800653614.
  • 17. Nunnally JC, Bernstein IH. Psychometric theory. New York: McGraw-Hill; 1994.
  • 18. Sánchez-Franco MJ, Martínez-López FJ, Martín-Velicia FA. Exploring the impact of individualism and uncertainty avoidance in Web-based electronic learning: An empirical analysis in European higher education. Comput Educ. 2009;52(3):588-98. doi: 10.1016/j.compedu.2008.11.006.
  • 19. Davari A, Rezazadeh A. [Structural equation modeling with PLS]. Tehran: Jahade Deneshgahi; 2016. Persian.
  • 20. Tenenhaus M, Vinzi VE, Chatelin YM, Lauro C. PLS path modeling. Comput Stat Data An. 2005;48(1):159-205. doi: 10.1016/j.csda.2004.03.005.
  • 21. Hair JF, Hollingsworth CL, Randolph AB, Chong AYL. An updated and expanded assessment of PLS-SEM in information systems research. Ind Manage Data Syst. 2017;117(3):442-58. doi: 10.1108/imds-04-2016-0130.
  • 22. Kang J. Mobile payment in Fintech environment: Trends, security challenges, and services. Human Centric Comput Inf Sci. 2018;8(1). doi: 10.1186/s13673-018-0155-4.
  • 23. Khoshhal Koshalli H, Allahyari M, Chizari M, Masooleh Z. [Factors influencing on acceptance of digital library by faculty members of agricultural educational and research institutions in Guilan province]. Iran J Agr Econ Dev Res. 2014;46(2):335-56. Persian.
  • 24. Yueh HP, Huang JY, Chang C. Exploring factors affecting students’ continued Wiki use for individual and collaborative learning: An extended UTAUT perspective. Australas J Educ Tec. 2015;31(1). doi: 10.14742/ajet.170.
  • 25. Wang YS, Shih YW. Why do people use information kiosks? A validation of the unified theory of acceptance and use of technology. Gov Inform Q. 2009;26(1):158-65. doi: 10.1016/j.giq.2008.07.001.
  • 26. Mansourzadeh M, Mahmoodi F, Hamdollah H. [Investigating the effective factors on acceptance of ICT among students based on Technology Acceptance Model 3]. Educ Strategy Med Sci. 2016;9(5):357-70. Persian.
  • 27. Venkatesh V, Morris MG, Davis GB, Davis FD. User acceptance of information technology: Toward a unified view. MIS Q. 2003;27(3):425. doi: 10.2307/30036540.
  • 28. Malhotra Y, Galletta DF. Extending the technology acceptance model to account for social influence: Theoretical bases and empirical validation. Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences 1999 Jan 5. 1999. 14 p.
  • 29. Venkatesh V, Brown SA. A longitudinal investigation of personal computers in homes: Adoption determinants and emerging challenges. MIS Q. 2001;25(1):71. doi: 10.2307/3250959.
  • 30. Kim SS, Malhotra NK. Predicting system usage from intention and past use: Scale issues in the predictors. Decision Sci. 2005;36(1):187-96. doi: 10.1111/j.1540-5915.2005.00070.x.
  • 31. Balog A, Pribeanu C. The role of perceived enjoyment in the students’ acceptance of an augmented reality teaching platform: A structural equation modelling approach. Stud Inform Control. 2010;19(3):319-30. doi: 10.24846/v19i3y201011.
  • 32. Zabadi AMA, Shura M, Elsayed EA. Consumer attitudes toward SMS advertising among Jordanian users. Int J Market Stud. 2012;4(1). doi: 10.5539/ijms.v4n1p77.
  • 33. Gardner C, Amoroso DL. Development of an instrument to measure the acceptance of Internet technology by consumers. Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 2004 Jan 5. 2004. 10 pp p.
  • 34. Hwang K, Lee E. The role of entertainment and external values in consumer's intention to use social network mobile. Int P Econ Dev Res. 2013;:;63:33-7. doi: 10.7763/ipedr.
  • 35. Gu J. Understanding self-directed learning in the context of mobile web 2.0 – case study with workplace learners. Interact Learn Env. 2016;24(2):306-16. doi: 10.1080/10494820.2015.1113708.
  • 36. Roessger KM, Eisentrout K, Hevel MS. Age and academic advising in community colleges: Examining the assumption of self-directed learning. Community College J Res Pract. 2018:1-14. doi: 10.1080/10668926.2018.1490669.
  • 37. Comas-Quinn A. Learning to teach online or learning to become an online teacher: An exploration of teachers’ experiences in a blended learning course. ReCALL. 2011;23(3):218-32. doi: 10.1017/s0958344011000152.
  • 38. Bandura A. Self-efficacy: The exercise of control. New York: Freeman; 1997.
  • 39. Hsu MH, Chiu CM. Internet self-efficacy and electronic service acceptance. Decis Support Sys. 2004;38(3):369-81. doi: 10.1016/j.dss.2003.08.001.
  • 40. Galavandi H, Ahmadi F. Study of the role of individual, cultural, and organizational factors in acceptance of information technology among students of Urmia University. Interdisc J Virtual Learn Med Sci. 2017;8(1). doi: 10.5812/ijvlms.14950.
  • 41. Fathi Vajargah K, Darvand S. Assessing and evaluating the effect of information and communication technology on improving teaching and learning levels among secondary school students: A case of Razi vocational school in Marivan. Interdisc J Virtual Learn Med Sci. 2018;9(1). doi: 10.5812/ijvlms.65358.

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments