Interdisciplinary Journal of Virtual Learning in Medical Sciences

Published by: Kowsar

Learning Analytics: A Systematic Literature Review

Seyyed Kazem Banihashem 1 , Khadijeh Aliabadi 1 , * , Saeid Pourroostaei Ardakani 2 , Ali Delaver 3 and Mohammadreza Nili Ahmadabadi 1
Authors Information
1 Department of Educational Technology, Faculty of Psychology & Educational Sciences, Allameh Tabataba’i University, Tehran, Iran
2 PhD in Computer Sciences, Assistant Professor of Educational Technology, Faculty of Psychology and Educational Sciences, Allameh Tabataba’i University, Tehran, Iran
3 Professor of Assessment and Measurement, Faculty of Psychology and Educational Sciences, Allameh Tabataba’i University, Tehran, Iran
Article information
  • Interdisciplinary Journal of Virtual Learning in Medical Sciences: June 2018, 9 (2); e63024
  • Published Online: June 12, 2018
  • Article Type: Research Article
  • Received: October 18, 2017
  • Revised: May 27, 2018
  • Accepted: May 29, 2018
  • DOI: 10.5812/ijvlms.63024

To Cite: Banihashem S K, Aliabadi K, Pourroostaei Ardakani S, Delaver A, Nili Ahmadabadi M. et al. Learning Analytics: A Systematic Literature Review, Interdiscip J Virtual Learn Med Sci. 2018 ;9(2):e63024. doi: 10.5812/ijvlms.63024.

Abstract
Copyright © 2018, Interdisciplinary Journal of Virtual Learning in Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion and Conclusion
Acknowledgements
Footnotes
References
  • 1. Banihashem SK, Aliabadi K. Connectivism: Implications for Distance Education. Interdiscipl J Virt Learn Med Sci. 2017;8(3). doi: 10.5812/ijvlms.10030.
  • 2. Siemens G, Long P. Penetrating the fog: Analytics in learning and education. Educause Review. 2011;46(5):30.
  • 3. Chen M, Mao S, Liu Y. Big Data: A Survey. Mobile Network Appl. 2014;19(2):171-209. doi: 10.1007/s11036-013-0489-0.
  • 4. Reid-Martinez K, Mathews M. Big data in education: Harnessing data for better educational outcomes. Cent Digit Educ. 2015;100:33.
  • 5. Cooper A. What is analytics? Definition and essential characteristics. CETIS Analytics Series. 2012;1(5):1-10.
  • 6. Ferguson R. Learning analytics: drivers, developments and challenges. Int J Tech Enhanced Learn (IJTEL). 2012;4(5/6):304. doi: 10.1504/ijtel.2012.051816.
  • 7. Guenaga M, Garaizar P. From Analysis to Improvement: Challenges and Opportunities for Learning Analytics. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje. 2016;11(3):146-7. doi: 10.1109/rita.2016.2589481.
  • 8. Siemens G. Learning Analytics. Am Behav Sci. 2013;57(10):1380-400. doi: 10.1177/0002764213498851.
  • 9. Chatti MA, Dyckhoff AL, Schroeder U, Thus H. A reference model for learning analytics. Int J Tech Enhanced Learn (IJTEL). 2012;4(5/6):318. doi: 10.1504/ijtel.2012.051815.
  • 10. Clow D. An overview of learning analytics. Teach High Educ. 2013;18(6):683-95. doi: 10.1080/13562517.2013.827653.
  • 11. Siemens G. What Are Learning Analytics?. 2010.
  • 12. Adejo O, Connolly T. Learning Analytics in a Shared-Network Educational Environment: Ethical Issues and Countermeasures. Learn. 2017;8(4).
  • 13. Fiaidhi J. The Next Step for Learning Analytics. IT Prof. 2014;16(5):4-8. doi: 10.1109/mitp.2014.78.
  • 14. Arnold KE, Pistilli MD, editors. Course signals at Purdue: Using learning analytics to increase student success. Proceedings of the 2nd international conference on learning analytics and knowledge. ACM; 2012.
  • 15. Avella JT, Kebritchi M, Nunn SG, Kanai T. Learning Analytics Methods, Benefits, and Challenges in Higher Education: A Systematic Literature Review. Online Learn. 2016;20(2):13-29.
  • 16. Siemens G, editor. Learning analytics: envisioning a research discipline and a domain of practice. Proceedings of the 2nd international conference on learning analytics and knowledge. ACM; 2012. 4 p.
  • 17. Cooper HM. Organizing knowledge syntheses: A taxonomy of literature reviews. Knowl Soc. 1988;1(1):104-26. doi: 10.1007/bf03177550.
  • 18. Conde MA, Hernandez-Garcia A. Learning analytics for educational decision making. Comput Hum Behav. 2015;47:1-3. doi: 10.1016/j.chb.2014.12.034.
  • 19. Dietz-Uhler B, Hurn JE. Using learning analytics to predict (and improve) student success: A faculty perspective. J Interact Online Learn. 2013;12(1):17-26.
  • 20. Dinu VE, Papuc D, Gheorghiu A, Dascalu M-I, Moldoveanu A, Moldoveanu F. Biometric data in learning analytics: A survey on existing applications. The International Scientific Conference eLearning and Software for Education; 2017: " Carol I" National Defence University. 2017.
  • 21. de Freitas S, Gibson D, Du Plessis C, Halloran P, Williams E, Ambrose M, et al. Foundations of dynamic learning analytics: Using university student data to increase retention. Br J Educ Tech. 2015;46(6):1175-88. doi: 10.1111/bjet.12212.
  • 22. Greller W, Drachsler H. Translating learning into numbers: A generic framework for learning analytics. J Edu Tech Soc. 2012;15(3):42.
  • 23. Ifenthaler D. Are Higher Education Institutions Prepared for Learning Analytics? TechTrends. 2016;61(4):366-71. doi: 10.1007/s11528-016-0154-0.
  • 24. Lawson C, Beer C, Rossi D, Moore T, Fleming J. Identification of ‘at risk’ students using learning analytics: the ethical dilemmas of intervention strategies in a higher education institution. Edu Tech Res Dev. 2016;64(5):957-68. doi: 10.1007/s11423-016-9459-0.
  • 25. Lu OHT, Huang JCH, Huang AYQ, Yang SJH. Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interact Learn Environ. 2017;25(2):220-34. doi: 10.1080/10494820.2016.1278391.
  • 26. Mah D-K. Learning Analytics and Digital Badges: Potential Impact on Student Retention in Higher Education. Tech Knowl Learn. 2016;21(3):285-305. doi: 10.1007/s10758-016-9286-8.
  • 27. Papamitsiou Z, Economides AA. Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. J Edu Tech Soc. 2014;17(4):49.
  • 28. Prinsloo P, Slade S, Galpin F, editors. Learning analytics. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge. ACM; 2012. 130 p.
  • 29. Reyes JA. The skinny on big data in education: Learning analytics simplified. TechTrends. 2015;59(2):75-80. doi: 10.1007/s11528-015-0842-1.
  • 30. Serrano-Laguna A, Fernandez-Manjon B, editors. Applying learning analytics to simplify serious games deployment in the classroom. Global Engineering Education Conference (EDUCON). IEEE; 2014. p. 872-7.
  • 31. Stewart C. Learning Analytics: Shifting from theory to practice. J Empower Teach Excel. 2017;1(1):10.
  • 32. Chatti MA, Lukarov V, Thüs H, Muslim A, Yousef AMF, Wahid U, et al. Learning analytics: challenges and future research directions. E-learn Educ (Eleed) J. 2014;10(1).
  • 33. Dawson S, Gasevic D, Siemens G, Joksimovic S, editors. Current state and future trends. Proceedings of the fourth international conference on learning analytics and knowledge. ACM; 2014. p. 231-40.
  • 34. Drachsler H, Greller W, editors. Privacy and analytics: it's a DELICATE issue a checklist for trusted learning analytics. Proceedings of the sixth international conference on learning analytics & knowledge. ACM; 2016. p. 89-98.
  • 35. Gasevic D, Dawson S, Jovanović J. Ethics and privacy as enablers of learning analytics. J Learn Anal. 2016;3(1):1-4. doi: 10.18608/jla.2016.31.1.
  • 36. Gasevic D, Dawson S, Siemens G. Let’s not forget: Learning analytics are about learning. TechTrends. 2014;59(1):64-71. doi: 10.1007/s11528-014-0822-x.
  • 37. Gasevic D, Dawson S, Rogers T, Gasevic D. Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. Internet High Educ. 2016;28:68-84. doi: 10.1016/j.iheduc.2015.10.002.
  • 38. Gursoy ME, Inan A, Nergiz ME, Saygin Y. Privacy-Preserving Learning Analytics: Challenges and Techniques. IEEE Transactions on Learning Technologies. 2017;10(1):68-81. doi: 10.1109/tlt.2016.2607747.
  • 39. Ifenthaler D, Tracey MW. Exploring the relationship of ethics and privacy in learning analytics and design: implications for the field of educational technology. Edu Tech Res Dev. 2016;64(5):877-80. doi: 10.1007/s11423-016-9480-3.
  • 40. Knight S, Buckingham Shum S, Littleton K. Epistemology, Assessment, Pedagogy: Where Learning Meets Analytics in the Middle Space. J Learn Anal. 2014;1(2):23-47. doi: 10.18608/jla.2014.12.3.
  • 41. Koh E, Shibani A, Tan JP-L, Hong H, editors. A pedagogical framework for learning analytics in collaborative inquiry tasks: an example from a teamwork competency awareness program. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge. ACM; 2016. p. 74-83.
  • 42. Lockyer L, Heathcote E, Dawson S. Informing Pedagogical Action. Am Behav Sci. 2013;57(10):1439-59. doi: 10.1177/0002764213479367.
  • 43. Macfadyen LP, Dawson S. Numbers are not enough. Why e-learning analytics failed to inform an institutional strategic plan. J Edu Tech Soc. 2012;15(3):149.
  • 44. Marzouk Z, Rakovic M, Liaqat A, Vytasek J, Samadi D, Stewart-Alonso J, et al. What if learning analytics were based on learning science? Australas J Educ Tech. 2016;32(6). doi: 10.14742/ajet.3058.
  • 45. Pardo A, Siemens G. Ethical and privacy principles for learning analytics. Br J Educ Tech. 2014;45(3):438-50. doi: 10.1111/bjet.12152.
  • 46. Rubel A, Jones KML. Student privacy in learning analytics: An information ethics perspective. Inform Soc. 2016;32(2):143-59. doi: 10.1080/01972243.2016.1130502.
  • 47. Slade S, Prinsloo P. Learning analytics: Ethical issues and dilemmas. Am Behav Sci. 2013;57(10):1510-29. doi: 10.1177/0002764213479366.
  • 48. West D, Huijser H, Heath D. Putting an ethical lens on learning analytics. Edu Tech Res Dev. 2016;64(5):903-22. doi: 10.1007/s11423-016-9464-3.
  • 49. Willis JE, Slade S, Prinsloo P. Ethical oversight of student data in learning analytics: a typology derived from a cross-continental, cross-institutional perspective. Edu Tech Res Dev. 2016;64(5):881-901. doi: 10.1007/s11423-016-9463-4.
  • 50. Wintrup J. Higher Education’s Panopticon? Learning Analytics, Ethics and Student Engagement. High Educ Pol. 2017;30(1):87-103. doi: 10.1057/s41307-016-0030-8.
  • 51. Wise AF, Vytasek JM, Hausknecht S, Zhao Y. Developing Learning Analytics Design Knowledge in the Middle Space: The Student Tuning Model and Align Design Framework for Learning Analytics Use. Online Learn. 2016;20(2):155-82.
  • 52. Wise AF, editor. Designing pedagogical interventions to support student use of learning analytics. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge. ACM; 2014. p. 203-11.
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments